
1

2

3

Have not looked into
- Master Data Services;
- Data Quality Services;
- StreamInsight;

The majority of the SQL Server team is now working on the SQL Azure and cloud
related feature.
A much smaller group is focused strictly on the on-premises offering.
Instead of spreading out a few features across the entire suite, they went deep in a
few key/strategic areas.

4

5

6

Added in SQL 2008.
Only Available in Enterprise Edition.

In SQL 2012 processor affinity was added, as well as cap percent.
Also, you can create up to 64 pools.

RG only works on the DB engine, not on SSAS, SSRS, SSIS, etc.
RG only works at the instance level, it is not multi-instance aware.

A workload group serves as a container for session requests that have similar
classification criteria.

A resource pool, represents the physical resources of the server. You can think of a
pool as a virtual SQL Server instance inside of a SQL Server instance.

7

8

Read I/O – physical reads, not logical reads;
Write I/O – Inserts? Updates?

9

Min Valule Default = 0
Max Value Default = 2^31

Resource Governor Steps in when there is resource contention. If there is no server
load, resource governor does not intervene.
If you set MAX values, Resource Governor steps in regardless of resource contention.

IOPS can’t be set via the Management Studio UI in 2014, you have to do it via T-SQL.

10

Hekaton adds
- Memory Area for tables and indexes
- FileStream type file group that is tagged as containing memory optimized data.

Index updates are not logged in Hekaton.
We have the option of making a table non-durable, so no logging is done at all.

I also hear a specialized ASP.Net session state provider will be making its way to
CodePlex sometime soon. This will be based on the lessons that Microsoft learned
when working with Bwin (which has been running 2014 since before Xmas).

11

Most of these limitations will go away in future versions.

12

checkpoint
go

dbcc dropcleanbuffers
go

CREATE TABLE DiskConsumers
(
Sequence int not null,
FirstName varchar(100),
LastName varchar(100)

CONSTRAINT PK_DiskSequence PRIMARY KEY NONCLUSTERED (Sequence),
)
GO

CREATE TABLE MemConsumers
(
Sequence int not null,

13

FirstName varchar(100),
LastName varchar(100)

CONSTRAINT PK_MemSequence PRIMARY KEY NONCLUSTERED HASH (Sequence)
with (bucket_count = 750000),
) WITH (MEMORY_OPTIMIZED = ON)
GO

CREATE TABLE MemVolatileConsumers
(
Sequence int not null,
FirstName varchar(100),
LastName varchar(100)

CONSTRAINT PK_VolatileMemSequence PRIMARY KEY NONCLUSTERED HASH
(Sequence) with (bucket_count = 750000),
) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_ONLY)
GO

begin tran
declare @counter int = 0
while @counter <= 1025282
begin
insert into DiskConsumers values (@counter, 'John', 'Jones')
set @counter += 1
end
commit
go;

begin tran
declare @counter int = 0
while @counter <= 1025282
begin
insert into MemConsumers values (@counter, 'John', 'Jones')
set @counter += 1
end
commit
go;

begin tran
declare @counter int = 0
while @counter <= 1025282
begin
insert into MemVolatileConsumers values (@counter, 'John', 'Jones')

13

set @counter += 1
end
commit
go;

update DiskConsumers set LastName = 'Snow'

update MemConsumers set LastName = 'Snow'

update MemVolatileConsumers set LastName = 'Snow'

delete from DiskConsumers
go

delete from MemConsumers
go

delete from MemVolatileConsumers
go

CREATE PROCEDURE SP_InsertRows
WITH NATIVE_COMPILATION, SCHEMABINDING, EXECUTE AS OWNER
AS BEGIN ATOMIC WITH
(
TRANSACTION ISOLATION LEVEL = SNAPSHOT, LANGUAGE = 'us_english'

)
declare @counter int = 0
while @counter <= 1025282
begin
insert into dbo.MemConsumers values (@counter, 'John', 'Smith')
set @counter += 1
end
END
GO

EXECUTE [dbo].[SP_InsertRows]
GO

select count (*) from MemConsumers

13

Your mileage may vary.

14

According to TDWI:
41% of companies have a data warehouse under 1TB;
In 3 years, only 17% of companies are going to have a data warehouse under 1TB;
In 3 years, over 34% of companies are going to have a data warehouse over 10TB;

A columnstore index is a technology for storing, retrieving and managing data by
using a columnar data format, called a columnstore.

A columnstore is data that is logically organized as a table with rows and columns, and
physically stored in a column-wise data format.

Not updateable - Is updated by rebuilding the index or switching partitions in and out.
It is not updateable by using the DML operations such as insert, update, and delete.

15

Primary storage method – translates into massive disk space savings;

Both index types can be configured to use columnstore or columnstore archival
compression.

16

checkpoint
go

dbcc dropcleanbuffers
go

set statistics io on

select
count(*),
marital_status,
gender
from
[RealConsumers]
where
collector_stamps = 1
and collector_dolls = 1
and collector_figurines = 1

17

and state = 'TX'
group by
marital_status,
gender

select
count(*),
marital_status,
gender
from
[RealConsumersNCCS]
where
collector_stamps = 1
and collector_dolls = 1
and collector_figurines = 1
and state = 'NY'
group by
marital_status,
gender

update
[RealConsumersNCCS]
set
marital_status = 'G'
where
collector_stamps = 1
and collector_dolls = 1
and collector_figurines = 1
and state = 'NY'
and marital_status is null

select
count(*),
marital_status,
gender
from
[RealConsumersCCS]
where
collector_stamps = 1
and collector_dolls = 1
and collector_figurines = 1
and state = 'NY'

17

group by
marital_status,
gender

select
count(*),
marital_status,
gender
from
[RealConsumersCCSA]
where
collector_stamps = 1
and collector_dolls = 1
and collector_figurines = 1
and state = 'NY'
group by
marital_status,
gender

update
[RealConsumersCCS]
set
marital_status = 'S'
where
collector_stamps = 1
and collector_dolls = 1
and collector_figurines = 1
and state = 'NY'
and marital_status is null

--Notice the deltastore
select
o.name as TableName,
c.state,
c.state_description,
c.total_rows
from
sys.objects o
join sys.column_store_row_groups c on o.object_id = c.object_id
where
o.name = 'RealConsumersCCS'

17

--Do not run, takes FOREVER!!!
ALTER INDEX [ClusteredColumnStoreIndex] ON [dbo].[RealConsumersCCS]
REBUILD PARTITION = ALL WITH (DATA_COMPRESSION = COLUMNSTORE)

--Connect to SQL4
select
count(*),
marital_status,
gender
from
[RealConsumersCCS]
where
collector_stamps = 1
and collector_dolls = 1
and collector_figurines = 1
and state = 'NY'
group by
marital_status,
gender

17

18

19

--Enable Server Configuration Syntax
ALTER SERVER CONFIGURATIONSET BUFFER POOL EXTENSION
ON(FILENAME='C:\BufferPool\SSD.bpe', SIZE = 5 GB);

--Check Status
SELECT * FROM sys.dm_os_buffer_pool_extension_configuration

--Returning cached page count for each database
SELECT
COUNT(*) AS cached_page_count,
CASE database_id

WHEN 32767 THEN 'ResourceDb'
ELSE db_name(database_id)
END

AS database_name,
is_in_bpool_extension
FROM
sys.dm_os_buffer_descriptors

20

GROUP BY
DB_NAME(database_id),
database_id,
is_in_bpool_extension
ORDER BY
database_name DESC

--Turn off BPE
ALTER SERVER CONFIGURATIONSET BUFFER POOL EXTENSION OFF;

select count(*), state, first_name from RealConsumers
where mayonnaise = 1
group by state, first_name order by 1 desc , 2

20

Database mirroring was deprecated in 2012, will no longer be available after 2014.

Both of these were introduced in 2012 and then enhanced in 2014.

21

22

Single DNS entry or IP address that clients connect to; (Virtual Network Name)

Still expensive to do Azure Deployments
Memory Intensive VM (8 x 1.6GHz CPU, 56GB RAM) $3,124.80

23

24

25

26

Although it is theoretically possible and officially supported, using an on-premises
SQL Server 2014 installation and database files in Windows Azure blob storage is not
recommended due to high network latency, which would hurt performance.

For this reason, the main target scenario for this white paper is SQL Server 2014
installed in Windows Azure Virtual Machines (IaaS).

27

No longer need to use TDE in order to achieve encryption of database backups.

28

Note: Compatibility level 90 is no longer supported in 2014. Level 90 is SQL Server
2005.

Run your workload with the new cardinality estimator, and then troubleshoot any
new performance issues in the same manner you do today.

If your workload is running with database compatibility level 110 and you want to test
or run a specific query with the new cardinality estimator, you can run the query with
trace flag 9481 to use version 120 (the new version) of the cardinality estimator.

29

30

For delayed durability, there is no difference between an unexpected shutdown and
an expected shutdown/restart of SQL Server.

Like catastrophic events, you should plan for data loss. In a planned shutdown/restart
some transactions that have not been written to disk may first be saved to disk, but
you should not plan on it. Plan as though a shutdown/restart, whether planned or
unplanned, loses the data the same as a catastrophic event.

31

Resource saving – (CPU, memory and disk space) by rebuilding only a single partition
online instead of rebuilding the entire index online.

32

33

34

35

36

